\(\int \sqrt {a+b \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [712]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 355 \[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 a (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 \sqrt {a+b} (3 A b-(a-b) C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \]

[Out]

-2/3*a*(a-b)*C*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-
sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/3*(3*A*b-(a-b)*C)*cot(d*x+c)*EllipticF((a+b*s
ec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c)
)/(a-b))^(1/2)/b/d-2*A*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(
a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/3*C*(a+b*sec(d*x+c))^(1/2)*tan(d
*x+c)/d

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {4142, 4143, 4006, 3869, 3917, 4089} \[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \sqrt {a+b} (3 A b-C (a-b)) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{3 b d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {2 a C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^2 d}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d} \]

[In]

Int[Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(-2*a*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a -
b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^2*d) + (2*Sqrt[a + b]*(
3*A*b - (a - b)*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[
(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b*d) - (2*A*Sqrt[a + b]*Cot[c + d*
x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d
*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*C*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4142

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*
Simp[a*A*(m + 1) + (A*b*(m + 1) + b*C*m)*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f,
 A, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2}{3} \int \frac {\frac {3 a A}{2}+\frac {1}{2} b (3 A+C) \sec (c+d x)+\frac {1}{2} a C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2}{3} \int \frac {\frac {3 a A}{2}+\left (-\frac {a C}{2}+\frac {1}{2} b (3 A+C)\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{3} (a C) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 a (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+(a A) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{3} (3 A b-(a-b) C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {2 a (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 \sqrt {a+b} (3 A b-(a-b) C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 12.67 (sec) , antiderivative size = 478, normalized size of antiderivative = 1.35 \[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (-2 a (a+b) C \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a (-3 A+C)+b (3 A+C)) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+12 a A b \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )-a C \cos (c+d x) (b+a \cos (c+d x)) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b d (b+a \cos (c+d x)) (A+2 C+A \cos (2 c+2 d x))}+\frac {\cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {4 a C \sin (c+d x)}{3 b}+\frac {4}{3} C \tan (c+d x)\right )}{d (A+2 C+A \cos (2 c+2 d x))} \]

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*(-2*a*(a + b)*C*Cos[(c + d*x)/2]^2*Sqrt[Cos[
c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c +
 d*x)/2]], (a - b)/(a + b)] + 2*b*(a*(-3*A + C) + b*(3*A + C))*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c
 + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)] + 12*a*A*b*Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b
)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - a*C*Cos[c + d*x]*(b + a*Cos
[c + d*x])*Tan[(c + d*x)/2]))/(3*b*d*(b + a*Cos[c + d*x])*(A + 2*C + A*Cos[2*c + 2*d*x])) + (Cos[c + d*x]^2*Sq
rt[a + b*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2)*((4*a*C*Sin[c + d*x])/(3*b) + (4*C*Tan[c + d*x])/3))/(d*(A + 2*C
 + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1306\) vs. \(2(320)=640\).

Time = 9.88 (sec) , antiderivative size = 1307, normalized size of antiderivative = 3.68

method result size
parts \(\text {Expression too large to display}\) \(1307\)
default \(\text {Expression too large to display}\) \(1921\)

[In]

int((A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*A/d*(cos(d*x+c)+1)*(-2*a*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2))+EllipticF(cot(d*x+c)-csc(d
*x+c),((a-b)/(a+b))^(1/2))*a-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b)*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))+2/3*C/d/b*(a+
b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)^2+EllipticE(cot(d
*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a
+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)^2
+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*a^2*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-cs
c(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*a*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^2*cos(d*x+c)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2+(cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2
))*a*b-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^2+cos(d*x+c)*sin(d*x+c)*a^2+cos(d*x+c)*sin(d*x+
c)*a*b+2*sin(d*x+c)*a*b+b^2*sin(d*x+c)+b^2*tan(d*x+c))

Fricas [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}}\, dx \]

[In]

integrate((A+C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2), x)